Industrial-Strength Painting with a Virtual Bristle Brush

Stephen DiVerdi*

Aravind Krishnaswamy

Sunil Hadap*

Adobe Systems Incorporated

Abstract

Research in natural media painting has produced impressive im-
ages, but those results have not been adopted by commercial appli-
cations to date because of the heavy demands of industrial painting
workflows. In this paper, we present a new 3D brush model with
associated algorithms for stroke generation and bidirectional paint
transfer that is suitable for professional use. Our model can repro-
duce arbitrary brush tip shapes and can be used to generate raster or
vector output, none of which was possible in previous simulations.
This is achieved by an efficient formulation of bristle behaviors as
strand dynamics in a non-inertial reference frame. To demonstrate
the robustness and flexibility of our approach, we have integrated
our model into major commercial painting and vector editing appli-
cations and given it to professional artists to evaluate.

CR Categories: 1.3.4 [Computer Graphics]: Graphics Utilities—
Paint systems— [1.6.8]: Simulation and Modeling—Types of
Simulation—Animation

Keywords: natural media painting, virtual brush, bristle dynamics

1 Introduction

Commercial digital painting has generally been limited to the re-
peated application of 2D bitmaps along a path (“stamping”), as pi-
oneered by systems such as SuperPaint [Smith 2001]. In general,
Gaussian blobs are used, resulting in smooth and relatively texture-
less compositions, but more interesting bitmaps can be employed
to create paint-like strokes. However, more sophisticated stroke
generation techniques [Baxter and Govindaraju 2010, Chu and Tai
2004, Laerhoven and Reeth 2007, Xu et al. 2004] have remained
squarely in the domain of research systems.

We believe this is because of the hard constraints put on commercial
features that research demonstrations do not have to satisfy. Users
of industrial-strength painting programs have strict requirements to
work at high resolutions (often print-quality of 300dpi or greater)
on many different document types (8-, 16-, and 32-bits per channel,
RGB, CMYK, and other color formats). Support for these doc-
uments must provide interactive performance on a wide range of
hardware, including low-end GPUs and CPUs. Stroke quality is of
the utmost importance as well — consistently drawing smooth lines
with predictable, stable, and robust behavior is absolutely necessary
to avoid user frustration. The main advantage of existing commer-
cial digital paint tools is that they satisfy all these requirements with
their simplified 2D stamp model. Conversely, research prototypes
tend to only work at screen resolution, in a single color space and

*e-mail: steved@adobe.com
te-mail: aravin@adobe.com
te-mail: hadap @adobe.com

Copyright © 2010 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions @acm.org.

VRST 2010, Hong Kong, November 22 — 24, 2010.

© 2010 ACM 978-1-4503-0441-2/10/0010 $10.00

119

bit depth, and using specific high-end hardware. They are adequate
as proofs of concept, but not as a part of industrial workflows.

In this paper, we present a 3D virtual brush simulation with asso-
ciated stroke generation and bidirectional paint transfer algorithms
that is both high quality and high performance. Our virtual brush
model represents individual bristles, and therefore is capable of the
full range of configurations of an arbitrary real brush, unlike exist-
ing brush simulation research. The focus of this research is in sat-
isfying the requirements of industrial-strength painting workflows,
and towards that goal, we have integrated our engine into a major
commercial digital painting product, which has since been used by
a large number of professional artists to create an impressive array
of different natural media painting styles. These artists have played
a critical role in our work, directly influencing our design decisions
and the final interface, for maximum usability. Another advantage
of our brush model is that it enables the output of vector stroke data,
and so we have also integrated it into a major commercial vector
editing application, with similar success. Professional illustrators
have used our vector brushes to create an organic style previously
unavailable in vector artwork.

The key contributions of this paper are

* a fast physical formulation of individual brush bristles,
* stroke generation with raster or vector output, and
« artist directed design and results from an industrial setting.

2 Related Work

Most commercial digital painting applications such as Adobe Pho-
toshop [2008] use simple 2D bitmaps stamped along a path to cre-
ate relatively flat strokes, but there are a few applications that make
more significant attempts at natural media painting. Ambient De-
sign ArtRage [2009] provides a set of brush-like tools that work
for fun, casual painting. Corel Painter [2010] includes a “RealBris-
tle” feature that creates textured strokes based on a set of brush-like
parameters. While both of these products can be used to add a nat-
ural media feel to digital compositions, the experience is still not as
dynamic or expressive as a real brush.

Three basic methods have been pursued to simulate the physics of
brush shapes: forward dynamics, energy minimization, and data-
driven approaches. Baxter et al.’s original work on brush simulation
[2001] computed forward dynamics of a mass and spring system,
which was used to deform a mesh. The mass and spring system was
fundamentally limiting to the fidelity of brush behavior that could
be reproduced, and required clever modeling for different types of
brushes.

Later work by Baxter and Lin [2004], as well as Chu and Tai [2004]
and Van Laerhoven and Van Reeth [2007], has focused on energy
minimization as the method to simulate brush dynamics. While
energy minimization provides good stiff behavior, it has not been
used to directly simulate a large number of individual bristles for
performance reasons.

Most recently, data-driven approaches have been explored. Xu et
al. [2004] created bristle “macros”, where a clump of bristles was
represented by a single macro that deformed according to data from
off-line simulations. Baxter and Govindaraju [2010] collected de-
formation data from videos of real brushes, which they used to com-

I 0

Figure 1: The top row shows some of the different brush shapes we have modeled in our system. The middle row has typical deformations of
those brushes, in average and extreme conditions, including arbitrary splitting of bristles. The bottom row contains exemplary strokes made

with each of the brush types.

pute the shape of a few splines that deform a brush mesh. Data-
driven techniques are very fast, as they replace complex math with
table lookups, but they are limited in the range of shapes they can
reproduce, and adding additional behaviors either requires signifi-
cantly more data collection (and larger associated tables), or com-
plex algorithms for incorporating physics.

There have been two different brush shape representations so far as
well: surface meshes and interpolated bristles. Mesh-based brushes
— Baxter et al’s, [2001], Chu and Tai’s [2004], and Baxter and
Govindaraju’s [2010] — treat the brush as a single bulk surface,
which is deformed by the underlying physical computations. De-
formed meshes are very fast to render on modern graphics hard-
ware, but the possible range of shapes that are representable by a
mesh’s constant-topology is very limited. These brushes can make
smooth wet-paint strokes, but depend on texture mapping for dry or
scratchy strokes, and do not support split or distressed brush stokes.
Chu and Tai [2004] extended their mesh with hierarchical split tufts
to recreate a limited form of some of these behaviors.

Rather than use a single brush mesh, interpolating approaches —
Baxter and Lin’s [2004] and Van Laerhoven and Van Reeth’s [2007]
— use brush physics to deform a set of pieces of geometry that rep-
resent individual brushes. Interpolation is much faster than simula-
tion, enabling the appearance of a brush with many bristles. How-
ever, since the shape is dictated by a small number of spines, the
possible range of shapes is still small. Furthermore, actual splits in
the shape of the brush tip are not possible, as bristles will always be
smoothly interpolated between spines, even when the real bristles
may have formed multiple distinct clusters.

3 Brush Simulation

The first step in reproducing a brush stroke is computing the tip’s
changing shape during the stroke. We use direct numerical simula-

120

tion of the dynamics of individual bristles as the underlying model.
As far as we are able to determine, this is a first in brush simulation
and it is the cornerstone of the quality of results and overall suc-
cess of our painting tool. However, we were faced with seemingly
incompatible simulation tradeoffs — accurate physical simulation of
bristles versus real-time constraints from the usability point of view.
The final details of our model are the result of many iterations of ex-
perimentation and feedback from professional artists at each stage
of the design.

3.1 Dynamics of Individual Bristles

There are a number of very effective methods developed for the
simulation of strand-like 1D primitives over the last decade. The
various models roughly fall into three categories: a) a strand as
a serial chain of rigid rods connected by spherical joints [2006],
b) a strand as piecewise higher-order dynamic primitives (he-
lices) [2006], or c) a strand as particles connected by con-
straints [2008]. Considering the robustness criteria of industrial
strength brush simulation, all the three methods have potential to
integrate the dynamics in a fully-implicit manner. However, the
possibility of extremely efficient numerical simulation coupled with
the relatively straightforward collision response model that can be
used, led us to alternative (c). Specifically, we implemented the
Discrete Elastic Rods paradigm from Bergou et al. [2008] as shown
in Figure 2. This model is very effective in capturing all the nu-
ances of bristle dynamics — non-straight rest shape, stiff bending
and torsional elasticity, and inextensibility. In addition, the method
efficiently eliminates the unnecessary modes of torsional dynamics
by using a quasi-static assumption — at each time step, the torsion
along the curve geometry is computed as an energy minimization
problem.

In the Discrete Elastic Rods model, the total elastic energy of the
bristle is comprised of [2008]

. ; _ A
Constrained Particles ","," \\Brush Base

.

Non-inertial Local Frame

Strands as Discrete Elastic Rods
Canvas

~

Figure 2: A brush is modeled as a set of discrete elastic rods,
simulated in a non-inertial local frame.

E(T) = Epend(T) + Erwist(T)

1

Epena(I') = 3 /(w —@) B (w—-w)"ds

Etwist(r) = %/ﬂdeS (1)

Here, I' is the shape of the bristle, w is the curvature vector of the
deformed bristle expressed in the material frame, w is the curvature
vector corresponding to the rest configuration of the bristle, m is
the twist along the bristle, B is the bending stiffness matrix, and 3
is the torsional stiffness.

We use the fully-implicit integration scheme of backward-Euler.
Consider the state space of a single n-vertex bristle € R3", v €
93" . The implicit velocity integration is given by

VOf o OF

_ o - 2
Vn41 — Vp = (I hM v h™M 8x)dv
e n O
= AM7(f+ B f) @)
f = VE®I) A3)

This results in a linear system that has a nice block tri-diagonal
structure with a block size of 3 x3, for our straight rest shape case.
We extended the direct sparse linear solver for tri-diagonal systems
from Davis [2006] to solve our block tri-diagonal problem. The
direct sparse linear solver has a significant advantage over iterative
solvers in terms of lower computational cost and memory band-
width. No matter how “stiff” the linear system is, the direct sparse
linear solver takes only one iteration for the solution, accessing the
state space only once. The extremely efficient solver for the sparse
linear system, along with carefully optimized constraint computa-
tions and their Jacobians, is the basis of real-time performance of
bristle dynamics.

3.2 Collision Response

As the bristles only interact with planar geometry of the paper, col-
lision detection is fairly straightforward. We perform continuous
collision detection for each particle and the plane. The collision
response and friction model is due to Bridson et al. [2002, 2003].
For the inextensibility constraint, we could have used linear springs
with very high stiffness constant. The backward-Euler integration
scheme is stable but not monotone, which means that we can get
spurious oscillations in the case of extremely high forces. This
is particularly true in the scenario where the bristles are smashed
down vertically and buckle under collision response. Ultimately,
instead of using stiff linear springs, we use the position and velocity
projection methods of Provot [1997] and Goldenthal et al. [2007],

121

along with the collision response model in an unified way as fol-
lows [2003].

h

vi=v"+ §M_1f”+1 a) implicit half step
dv,, = —v,, b) plastic collision
* * dV:; * o e
dvi = v{ —maxz(0,1 — u‘ " ‘)vt c) friction
Vi

v =v"+dv) +dv]

1
xn+ — Xn + hV*

d) velocity impulse

e) explicit full step

x" = " Cxo f) position correction
vi=v*+ —CIZM g) velocity projection
, « h N
vl — vt o §M Lentd h) implicit half step

We first estimate the velocities at the half time step v* using im-
plicit backward-Euler integration (step a). We then apply the veloc-
ity impulses due to collision response and friction (step b-d). Then
we compute the candidate position update X,,+1 from the corrected
mid-point velocities (step e). The candidate positions typically vi-
olate the inextensibility and non-penetration constraints. We use
an iterative inverse kinematics-like procedure [1997] to correct the
positions in order to satisfy the constraints (step f). We reflect the
change in positions into the half-step velocity (step g), and the re-
maining half implicit step is performed to compute the final veloci-
ties (step h).

3.3 Bristle Plasticity

Real brushes typically have bristles that have slightly wavy (non-
straight) geometry, for which a straight rest shape of the strand
would suffice. However, to mimic the plastic shape deformation
of a wet brush volume, predominately resulting from the bristles-
bristle adhesion, we considered using the bending elasticity of the
non-straight rest shape that evolves using an artificial plasticity. To
tryout the plasticity ideas, we implemented the fully-implicit bend-
ing energy formulation of non-straight rest shapes, as described in
Bergou et al.’s later work [2010], in our individual strand simulation
testbed.

For artificial plasticity, for each time step, if the local bending en-
ergy density is above certain threshold, we successively “yield” the
rest configuration curvature w towards the current curvature w ac-
cording to the following formula.

w

3

l-a)w+aw,

(w-®)Bw-w)" >e 4)
Here, « is the yield rate and € is the yield threshold. In our ini-
tial experimentation, we found that this simple artificial plasticity
model is quite effective in capturing plastic deformation of the bris-
tle volume. However, brush plasticity poses unique workflow is-
sues, such as whether and when to reset the bristles to their original
shape, which artists thought would be more confusing than helpful.
Ultimately, we opted for the increased performance and simpler dy-
namics of straight rest shape bristles for the current implementation.
For the case of straight rest shape, the dynamics of individual bris-
tle reduces to a totally torsion free formulation, resulting into very
efficient implementation.

3.4 Local Dynamics

In order to attach the bristles to the base of the brush tip, we extend
the bristles at the root by the addition of extra particles as shown

_ho. Stiffness = 100%
b Stiffness = 80%
<
2
T
T ..
< Stiffness = 60%
e
[sa]
Stiffness < 50%

Stylus Pressure 'Pmax

Figure 3: The mapping between stylus pressure and brush height
changes with bristle stiffness.

in Figure 2. The two particles at the base are constrained to the
motion of the brush. If we carry out the dynamics in the global
inertial frame, there will be very large forces exerted on “free” par-
ticles of the bristles due to the inextensibility constraints and bend-
ing/torsional stiffness. Even though the system could handle the
“stiff” underlying dynamics due to its fully-implicit formulation for
bending/torsional dynamics and projective method for inextensibil-
ity condition, we effectively avoid the situation altogether by com-
puting forces in a non-inertial frame. This is similar to previous
acceleration-less energy minimization methods [2004, 2004] and
addresses one of the main limitations of forward dynamics for bris-
tle simulation, achieving robust, stable behavior even under very
brisk motion.

We transform the global body forces due to gravity, acceleration,
and velocity (linear and angular) of the brush and position and ori-
entation of collision geometry (the canvas) into the local frame at-
tached to the base of the brush tip. We then carry out the bristle
dynamics calculations in the non-inertial local frame. This way we
can effectively control the extent of external forces that are applied
to the bristles. In fact, we completely remove the acceleration (lin-
ear and angular) of the brush from the dynamics; in reality bristles
are too stiff to visibly react to the brisk motion of the brush during
normal brush strokes. We also remove the centripetal and Coriolis
acceleration on each particle due to angular velocity of the brush.
However, we include brush velocity (linear and angular) in the dy-
namics to capture the frictional dynamics with the paper.

3.5 Bristle-bristle Interaction

A significant factor in the bulk behavior of brush tips is the interac-
tion among individual bristles due to collisions and stiction. Previ-
ous brush simulation work has attempted to recreate the behaviors
through the explicit introduction of tip spreading [2004,2010]. Un-
fortunately, in a brush tip model that simulates individual bristles,
bristle-bristle interaction comes at a steep computational cost. Con-
tacts grow quadratically with the number of bristles and even linear
techniques such as continuum dynamics [2001] still add significant
complexity. However, contrary to these results, in our initial brush
simulation experiments (using a bristle as a serial chain of rigid
rods model) we included bristle-bristle collision response and did
not find a significant, perceptible difference in the quality of brush
strokes.

Our key observation is that, when brushes are pressed into the can-
vas causing significant bristle-bristle interaction, the artist’s intent
is less precise, whereas for careful, fine strokes, bristle-bristle in-
teraction is not a dominant effect. This seems counter-intuitive, as
without collisions, bristles will cross through each other creating
non-physical configurations. However, the brush tip’s shape is not
the goal here, but the resulting stroke, which looks comparable in
the two scenarios. Therefore, because of the order of magnitude
performance gain, we chose to simulate each bristle independently

122

5 Fle Edit Image Layer Select Fiter Analysis 3D View Window Help | [B F9v 1w0% v [EE~

PaER E o, Lgnt

~ wet:| 10% [» | Load: s [| e 0% [0 | Flowe | 100% [

ce(®= =]
£l % [o | |2 |2
o PSR
e [] Shape Dynamics | | 25 | 36 | 25 | 35 | 3
. [scattering A EIEAEIERE:
1 P glls s ulal -
2, - al = s
, a Lr
] reaneter & Bristle Qualities

| a Shape: Round Fan -
&, e — ==y

) Length: | 25%

7] Airbrush B 5 2
rJ Thickness: [} 1%
4 7] Smocthing & .
LY amearan 0| oo e
a‘ Angle: n} 0
LY 9] Spacing ER
2, 2
T,
a8
<3

Figure 4: A screenshot of the brush tip and paint mixing param-
eters as presented to the user in our commercial digital painting
program.

and forego bristle-bristle interaction.

3.6 User Interface

For simplicity and intuitiveness of the interface, the user is pro-
vided with a set of basic brush tip shapes to choose among: point,
blunt, curve, angle, and fan, in either flat or round cross-section
variants. These shapes were created in an offline modeling process
that allowed for arbitrary bristle configurations. The user can then
select settings for brush size (a uniform scale of the shape), brush
length (scale along each bristle’s axis), number of bristles, and bris-
tle stiffness (see Figure 4). This set of exposed control parameters
was chosen based on artist feedback. Bristles are generated using
Poisson-disk Distribution inside the scaled shape to create the final
brush tip.

To afford users intuitive control of the brush pose during a stroke,
we directly map the position and orientation of a tablet stylus to the
position and orientation of the virtual brush. This reproduces the
full range of dynamic shape changes that users expect from work-
ing with real brushes. However, it is unclear how to best map the
stylus pressure to the brush height with respect to the canvas. Artists
pointed out that our original, simple one-to-one mapping made the
bristle stiffness parameter useless because the same pressure ap-
plied to the stylus always resulted in the same deformation of the
bristles, whereas a brush with very stiff bristles should be very dif-
ficult to get to deform at all. Therefore, we changed our pressure to
height mapping to depend on the bristle stiffness, so stiffer bristles
are deformed less at maximum stylus pressure (see Figure 3).

4 Paint Deposition

After the motion of the bristles has been computed via our physi-
cal model, the dynamic shape is used to determine the contact area
on the canvas and to compute the bidirectional transfer of paint be-
tween the canvas and the brush.

4.1 Stroke Generation

While our physical bristle simulation is able to compute the dynam-
ics of many more bristles in real time than previous methods, it is
still not able to achieve the up to one thousand bristles found in a
real brush. Additionally, different computer hardware has differ-
ent maximum numbers of bristles that can be simulated, based on
processor speed. However, more important than the exact number
of bristles in recreating a brush stroke’s appearance is the area of

coverage by those bristles, so we maintain the coverage area by in-
creasing bristle thickness as the number of bristles decreases. This
way, one hundred bristle, fifty bristle, and ten bristle brushes all
create the same bulk stroke effects, with a difference only in the
quality of fine texture features. This allows the number of bris-
tles to be treated as a tradeoff between simulation performance and
brush stroke fidelity.

Conversely, previous work uses interpolated bristles to create a
densely populated brush with low simulation cost — up to 200 in
Baxter and Lin [2004]. The downside to interpolated bristles is
twofold. First, they prevent proper brush tip splitting behavior,
by enforcing a smooth distribution of bristles regardless of con-
figuration. Real brush tips exhibit non-uniform bristle distribution
through clumping. Second, a large number of interpolated bristles
has a high rasterization cost which necessitates the use of the GPU.
However, because of the difficulty in robust support for a diverse
array of consumer GPUs, we cannot depend on hardware acceler-
ated rasterization and must design for the CPU only case. Instead
of many interpolated bristles, thick bristles are able to achieve sim-
ilar bulk brush stroke quality and allow arbitrary brush tip splitting,
with lower computational cost.

Users may also want to explicitly reduce the thickness of bristles
without increasing their number, to create the appearance of dry,
scratchy strokes. Since thick bristles yield strokes with full cov-
erage, they have the appearance of very wet paint. Therefore, we
leave relative thickness as a user parameter — see Figures 4 and 5.

Once the 3D positions of the bristle vertices are known, the canvas
contact area is determined by rendering orthographically projected
quad strips, as in Baxter and Lin [2004]. While many contact area
stamps are necessary along a stroke to create a smooth appearance,
physical simulation steps can be taken at a lower rate and bristle
geometry can be interpolated for intermediate stamps. This creates
piece-wise linear strokes similar to previous approaches. However,
artists require smooth strokes (C2 continuity), normally achieved
by bezier interpolation of input positions, rather than linear. This
suggests bezier interpolation should be used for the bristle geome-
try to achieve sufficient quality, but our observation is that placing
linearly interpolated bristle geometry along bezier interpolated in-
put positions is acceptable and fast.

An additional advantage of the individual bristle model is that it en-
ables vector output through bristle sweeping. A brush stroke can
be represented as a set of transparent filled vector outlines, called
“sweeps”, one per-bristle. A sweep is generated by computing the
envelope around the set of instantaneous 2D poses of a bristle over
the stroke. A bristle’s instantaneous 2D pose is an ellipse oriented
so its furthest points align with the two extreme points of the bris-
tle’s contact with the canvas and the minor axis is the bristle di-
ameter. The envelope around these poses is then computed using
Pudet’s method [1994]. Mesh-based brush models would not work
with this technique because the contact area would need to be vec-
torized each stamp, and only a single sweep would be generated for
the entire stroke resulting in flat shading rather than texture.

4.2 Bidirectional Transfer

During the brush stroke, as each instantaneous contact area is com-
puted, the transfer of paint between the brush and canvas must be
simulated. Through this mechanism, the effects of non-uniform
brush paint load, brush drying, and brush dirtying are enabled. Bax-
ter et al.’s [2001] work models paint load as reservoir and surface
layers mapped on to the brush mesh. Paint on the canvas is mixed
into the surface layer, which is kept full from the reservoir and then
deposited at a constant rate. The downside of this approach is that
regardless of how much paint gets picked up, the constant volume
and constant deposition rate results in a constant length of dirty

123

il

§95$

Figure 5: Different brush tips and strokes with (from left to right)
10 bristles and 25% thickness, 10 bristles and 100% thickness, 40
bristles and 25% thickness, and 40 bristles and 100% thickness.

streak, whereas a real brush that picks up a large amount of paint
should make a much longer stroke than a brush that picks up a small
amout.

To address this limitation, we replace the surface texture with a
pickup buffer which starts out empty and is updated to store only
the paint picked up off the canvas. Deposition is done by mixing the
reservoir and pickup paint colors together just before applying to
the canvas. In this way, the pickup and reservoir buffers are depleted
independently, and so small amounts of picked up paint create short
streaks while large amounts create longer streaks. As in the work of
Chu et al. [2010], these buffers are aligned and resolution-matched
with the canvas, rather than mapped to the bristles directly.

Ideally, to enable conservation of paint during and between strokes,
the canvas should also be augmented with an F channel. This allows
a brush stroke to pick up and put down the same paint repeatedly
without changing the overall amount of paint on the canvas. How-
ever, if a canvas F channel is not available, each canvas pixel must
always be treated as though it stores an infinite amount of paint.

Since our model is based on simple per-channel linear blending op-
erations, it can work with arbitrary document colorspaces — typi-
cally RGB or CMYK, but also Lab or others, and with or without
alpha. Furthermore, while blending math is carried out in 32-bit
floating point, careful consideration of conversion and rounding al-
lows canvas data of arbitrary bit-depth (generally 8, 16, or 32 bits
per channel) to be manipulated without algorithmic changes. These
considerations allow us to use SSE to implement the blending math,
for a significant speed improvement.

To allow intuitive user control over the paint mixing process, we
worked with artists to determine what paint stroke qualities it is
most important to have direct control over. As a result, we expose
three paint parameters: load, wetness, and mixing. Load determines
the amount of paint stored in the reservoir buffer upon filling with
paint, wetness specifies the amount of paint that is picked up from
the canvas into the pickup buffer, and mixing represents the rate at
which picked up paint is mixed with reservoir paint. See Figure 6.

5 Results

As we have worked extensively with professional artists on the inte-
gration of our brush model into commercial raster and vector paint-
ing applications, we have received many impressive pieces of art-
work using the new tools. A test sheet showing a variety of different
brush stroke and paint mixing effects can be seen in Figure 7. Some

Figure 6: A variety of red strokes with different paint mixing pa-
rameters applied on top of some blue paint, showing some of the
many behaviors that are possible.

examples of completed pieces, including both raster and vector out-
put, can be seen in Figures 8 and 9.

5.1 Performance

The three main stages of our algorithm are physical simulation of
the bristles, rasterization of the brush stamp, and compositing the
stamp and canvas. Table 1 shows profile data from our raster appli-
cation using a variety of different settings for a round point brush on
a 300dpi RGBA canvas. Our test system is a MacBook Pro laptop
with 2.6GHz Intel Core2 Duo processor running Mac OS X 10.5.8.

diam bristles thick P R C
(mm) (%) (ms) (ms) (ms)
2.5 50 1 0.5 029 031
5 50 1 051 044 0.84
10 50 1 046 097 2.8
10 50 50 054 1.8 32
10 50 100 0,53 23 3.7
10 25 1 025 078 2.8
Table 1: Milliseconds per output stamp spent in each por-

tion of brush stroke generation algorithm (Physics, Rasterization,
Compositing), on our test system for exemplary input.

One physical simulation step of a single bristle with six vertices
takes 30us on average. That means up to 1000 bristles can be sim-
ulated on a single core at 30Hz, which is a significant improvement
over existing bristle or spine simulation speeds. However, simu-
lation steps are taken based on traversed canvas pixels, which is
velocity dependent — for example, a typical quick stroke may cover
five inches per second, which is 1500 pixels. At one physics step
per 3 pixels, that is 500 physics steps, which means about 67 bris-
tles can be simulated in that time. For comparison, Baxter and
Lin [2004] report a four vertex spine solves in 100us (increasing
quadratically with the number of vertices). At 10us for a six ver-
tex bristle, Baxter and Govindaraju’s [2010] data-driven approach
could simulate more bristles but with a less expressive range of pos-
sible shapes.

Unfortunately, the difficulties in supporting GPU acceleration reli-
ably over a wide variety of different graphics cards vendors, driver
versions, and operating systems has ruled it out for the time being,
forcing us to rely on CPU rasterization and compositing instead.
The fillrate of our software rasterizer is 7SMpixels/sec. This ends
up being a significant cost, despite being negligible on our GPU
prototype.

Because of the high stamping rate required to get smooth strokes,
the compositing cost, which largely consists of the paint transfer al-
gorithm, also ends up being significant. For a typical circle stamp of
100x100 pixels with 7900 non-zero pixels to be composited, 1200

124

—

Figure 7: Test sheet showing a variety of brush stroke and paint
mixing effects.

stamps can be composited per second on a single CPU core, or
0.83ms per stamp.

There are a variety of ways we are able to take advantage of multi-
core systems to improve our performance. We get the biggest im-
provement by pipelining the three algorithm stages so they can
overlap one another. For a two-core machine, we put the physics on
one core and the rasterization and composition on the second, which
yields a nearly 2x speed improvement depending on the size of the
brush and the number of bristles. For a larger number of cores, we
can further pipeline rasterization with compositing, which gives an-
other significant speedup for large brushes. Beyond pipelining, as
the number of bristles continues to increase, there is a smaller ben-
efit gained from distributing the different bristles’ physical simula-
tion across the cores. Larger stamps can also experience improved
compositing cost by sending tiles of the stamp and canvas to differ-
ent cores.

In general, we are able to achieve interactive painting rates for
brushes of up to 100 bristles and sizes up to 25mm at 300dpi on
average hardware. Newer processors such as the Intel Core 17 are
much faster and can handle larger brushes.

6 Conclusions

We have presented a novel virtual 3D brush model that represents
individual bristles at a faster speed and with a greater degree of flex-
ibility than previous work. We have integrated this system into two
commercial painting products, one raster and one vector, to demon-
strate our model’s robustness to real-world industry demands. Pro-
fessional artists have successfully used these tools to create a wide
variety of different styles of artwork, all with the appearance of nat-

Figure 8: Examples of vector output by professional artists. Insets are zoomed in to show resolution independence. Used with permission.

ural media paintings.

In the future, we will continue to improve performance of our
model, specifically by integrating GPU acceleration for the raster-
ization and compositing. That alone will enable an additional leap
in performance, especially for large brushes. We also will consider
the wide array of other effects seen in natural media artwork for
our new tools, maintaining our emphasis on industrial-strength so-
lutions that are usable by artists for professional work.

Acknowledgements

We would like to thank Miklos Bergou and Eitan Grinspun for
their valuable support during our collaboration with University of
Columbia on Discrete Elastic Rods and its implementation. We also
specially thank the artists Mike Shaw, Daniel Presedo, Karen Tan-
ner, John Derry, Greg Geisler, Craig Mullins, Olaf Giermann, and
Scott Valentine for their feedback and artwork.

References

ARTRAGE, 2009. Ambient design. http://www.artrage.
com/.

BAXTER, W., AND GOVINDARAJU, N. 2010. Simple data-driven
modeling of brushes. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, 135-142.

BAXTER, W., AND LIN, M. 2004. A versatile interactive 3d brush
model. In Proceedings of the Pacific Conference on Computer
Graphics and Applications, 319-328.

BAXTER, B., SCHEIB, V., LIN, M., AND MANOCHA, D. 2001.
Dab: Interactive haptic painting with 3d virtual brushes. In Pro-
ceedings of ACM SIGGRAPH, 461-468.

BERGOU, M., WARDETZKY, M., ROBINSON, S., AUDOLY, B.,
AND GRINSPUN, E. 2008. Discrete elastic rods. In Proceedings
of ACM SIGGRAPH, 1-12.

BERGOU, M., AUDOLY, B., VOUGA, E., AND WARDETZKY, M.
2010. Discrete viscous threads. In Proceedings of ACM SIG-
GRAPH. To appear.

BERTAILS, F., AuDOLY, B., CANI, M.-P., QUERLEUX, B.,
LEROY, F., AND LEVEQUE, J.-L. 2006. Super-helices for pre-
dicting the dynamics of natural hair. In Proceedings of ACM
SIGGRAPH, 1180-1187.

125

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust
treatment of collisions, contact and friction for cloth animation.
In Proceedings of ACM SIGGRAPH, 594-603.

BRIDSON, R., MARINO, S., AND FEDKIW, R. 2003. Simulation
of clothing with folds and wrinkles. In Proceedings of the ACM
Symposium on Computer Animation, 28-36.

CHU, N., AND TAI, C.-L. 2004. Real-time painting with an ex-
pressive virtual chinese brush. IEEE Computer Graphics and
Applications 24, 5, 76-85.

CHU, N., BAXTER, W., WEI, L.-Y., AND GOVINDARAJU, N.
2010. Detail-preserving paint modeling for 3d brushes. In Pro-
ceedings of the International Symposium on Non-Photorealistic
Animation and Rendering.

Davis, T. A. 2006. Direct Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA.

GOLDENTHAL, R., HARMON, D., FATTAL, R., BERCOVIER, M.,
AND GRINSPUN, E. 2007. Efficient simulation of inextensible
cloth. In Proceedings of ACM SIGGRAPH, 49.

HADAP, S., AND MAGNENAT-THALMANN, N. 2001. Modeling
dynamic hair as a continuum. Computer Graphics Forum 20, 3.

HADAP, S. 2006. Oriented strands: dynamics of stiff multi-body
system. In Proceedings of the ACM Symposium on Computer
Animation, 91-100.

LAERHOVEN, T. V., AND REETH, F. V. 2007. Brush up your
painting skills: Realistic brush design for interactive painting ap-
plications. The Visual Computer 23,9, 763-771.

PAINTER, 2010. Corel. http://www.corel.com/
painter/.

PHOTOSHOP, 2008. Adobe. http://www.adobe.com/
photoshop/.

Provort, X. 1997. Collision and self-collision handling in cloth
model dedicated to design garment. In Proceedings of Graphics
Interface, 177-89.

PUDET, T. 1994. Real time fitting of hand-sketched pressure brush-
strokes. Computer Graphics Forum 13, 3, 205-220.

SMITH, A. R. 2001. Digital paint systems: An anecdotal and
historical overview. IEEE Annals of the History of Computing
23,4-30.

Xu, S., TANG, M., LAU, F., AND PAN, Y. 2004. Virtual hairy
brush for painterly rendering. Graphical Models 66, 5, 263-302.

T
- -~ ~

S

Figure 9: Examples of raster output in a variety of styles by professional artists. Each piece was composed using different settings for the
brush and mixing parameters to achieve the final appearances. Used with permission.

126

